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Abstract—While information visualization frameworks and heuristics have traditionally been reluctant to include acquired codes of 
meaning, designers are making use of them in a wide variety of ways. Acquired codes leverage a user’s experience to understand 
the meaning of a visualization. They range from figurative visualizations which rely on the reader’s recognition of shapes, to 
conventional arrangements of graphic elements which represent particular subjects. In this study, we used content analysis to 
codify acquired meaning in visualization. We applied the content analysis to a set of infographics and data visualizations which are 
exemplars of innovative and effective design. 88% of the infographics and 67% of data visualizations in the sample contain at least 
one use of figurative visualization. Conventions on the arrangement of graphics are also widespread in the sample. In particular, a 
comparison of representations of time and other quantitative data showed that conventions can be specific to a subject. These 
results suggest that there is a need for information visualization research to expand its scope beyond perceptual channels, to 
include social and culturally constructed meaning. Our paper demonstrates a viable method for identifying figurative techniques and 
graphic conventions and integrating them into heuristics for visualization design. 

Index Terms—Visual Design, Taxonomies, Illustrative Visualization, Design Methodologies

 

INTRODUCTION 
Understanding how a visualization creates meaning is a key task for 
visualization research. Knowledge of the interpretation process plays 
an important role in both visualization evaluation and design. 
Successful visualization depends on a viewer decoding the visual 
scene into a message about the underlying data. While the perceptual 
aspects of this interpretation are well-studied, less attention is given 
to the conventions of practice that have developed within the 
visualization community. Socially constructed meaning is an 
overlooked factor and an untapped resource in creating visualizations 
which resonate with an intended audience. 

It is well established that the interpretation of visual information 
is affected by learned codes as well as innate perceptual mechanisms 
[55]. Many authors, both within information visualization [24, 25], 
and in related fields such as visual literacy [4, 37] and psychology 
[21, 50, 51],  identify the existence of acquired codes of meaning in 
the interpretation of visualization.  

However, the acknowledgement of acquired meaning is 
accompanied by a reluctance to include it in information 
visualization frameworks or heuristics. The term ‘graphics’ is 
explicitly defined by Bertin to exclude elements which  “rely either 
on an explanation coded in another system (legends) or on a 
FIGURATIVE ANALOGY of shape or color (symbols), which is 
based on acquired habits or learned conventions and can never 
claim to be universal” ([7] p. 7). Standard grammars and taxonomies 
of visualization take their cues from Bertin, and either limit their 
scope to graphics [56], or embed information visualization within the 
realm of data graphics, excluding conventional meaning [12, 59].  
Where imagery is included in information visualization, the 
emphasis is on machine generated images such as medical scans or 
geometric models, not familiar shapes [48]. Similarly, a collection of 

multiple sets of heuristics for visualization design includes results 
from studies of perception and analysis of visualization tasks, but not 
consideration of acquired meaning [62].  

Existing visualization research has mainly focused on leveraging 
the current understanding of the human perceptual system to improve 
visualization quality [22].  

Increasingly, visualization researchers are calling for a greater 
understanding of culturally and experientially mediated responses to 
visualization. Understanding and making effective use of visual 
metaphors has been identified as a key challenge for visualization 
research [8, 20, 33]. Researchers have also explored the boundary 
between art and information visualization [28, 54], drawing 
inspiration for information visualization designs [17] or analyzing  
how abstract shapes and motion create affective responses [17-19]. 

Alongside this broadening theoretical outlook, a growing number 
of experimental studies have suggested that perceptual cues are 
insufficient to explain users’ performance with visualizations. 
Contradicting theoretical advice against ‘chart junk’, a test of user 
performance found the use of images in or framing a graph did not 
affect response speed or performance, and aided retention [5], while 
a larger study found that pictorial elements in visualizations 
significantly increased their memorability [9]. The style of a 
visualization has been shown to change the type and perceived depth 
of insights users generate [53]. The possibility of a social convention 
around different uses of bar and line graphs has also been used to 
explain a stronger than expected experimental result [57]. Other 
research has explored the links between verbal metaphor and 
corresponding metaphors in information visualization in order to 
explain different accounts of user performance [60, 61].  

Missing from the literature is an analysis determining how 
acquired meaning is actually used in practice.  

Acquired meaning in visualization can take the form of overt 
figurative representation or more subtle visual convention. When 
designers include illustrations or similar images in a visualization 
they are relying on the audience’s recognition of an object based on 
its shape. The audience’s existing knowledge is explicitly called 
upon to understand the visualization’s meaning. Even when the 
illustration shows something unfamiliar to the audience, visual cues 
and context ground the new information in existing knowledge. 
Acquired meaning can also be evoked more subtly through the use of 
conventions for how a particular kind of data is represented. An 
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example is the use of a line graph to represent time series [36] or 
vertical tree structures for organization charts.  

The contribution of this work is to evaluate the use of figurative 
visualization and visual conventions in visualization against 
competing theories around the role of acquired meaning in 
visualization. Bertin’s concept of purely abstract mappings between 
data and representation – ‘graphic purity’ – suggests that good 
visualizations will avoid the ambiguity of acquired meaning and rely 
instead on abstract arrangements of perceptual primitives (visual 
variables). On the other hand, theories of graph comprehension [38], 
visual literacy [4] and memorability [5, 9] suggest that effective 
designs will make use of conventions and figurative elements to 
reduce the effort required for the user to understand and remember 
the message a visualization. We apply content analysis to identify 
uses of socially constructed meaning in exemplars of ‘best-practice’ 
drawn from two different categories of visualization: data 
visualization and infographics. Data visualization is grounded in the 
tradition of graphic purity, while infographics have no such ideal, 
and in contrast have traditionally made use of illustration [32]. 
Comparing the use of acquired meaning within these two categories 
provides us with an indication of how strongly the ideal of graphic 
purity shapes information visualization practice.  

The paper describes the content analysis approach, including the 
choice of the sample set, the process of coding a visualization and 
the analysis of the coded dataset (see section 1). The key results 
focus on two areas: figurative visualization, and conventions around 
the depiction of time (section 2). The results of the content analysis 
are used together with existing literature to distill a number of 
candidate guidelines for incorporating acquired meaning into design 
(section 3), and set out an agenda for integrating acquired meaning 
into visualization practice and research (section 4). 

1 CONTENT ANALYSIS 
We use content analysis as a method for identifying acquired 
meaning in visualization. Tipaldo  defines content analysis as “a 
wide and heterogeneous set of manual or computer-assisted 
techniques for contextualized interpretations of documents produced 
by communication processes strictiore sensu (any kind of text, 
written, iconic, multimedia, etc.) or signification processes (traces 
and artefacts), having as an ultimate goal the production of valid 
and trustworthy inferences” ([47] p.42). Krippendorff [30] provides 
an operational definition of content analysis by posing six questions 
that any such analysis should address:  

1. What data is analyzed?  
2. How is the data defined?  
3. What is the population from which the data is drawn?  
4. What is the context relative to which the data is analyzed?  
5. What are the boundaries (limitations) of the analysis?  
6. What is the target of the inferences made through any 

analysis?  
The underlying assumption in content analysis is that the most 

frequently used codes will reflect the most important concerns in a 
communication system. Accepted practice for content analysis is to 
have multiple coders use the same coding scheme to independently 
code a dataset and to then cross-check the results for inter-coder 
reliability, a measure of the level of agreement between coders [31]. 
If there is high disagreement between coders it could be reasonably 
inferred that the coding scheme or data are prone to subjective bias. 
Krippendorf’s alpha [29] is a widely accepted measure of inter-coder 
reliability as it can tolerate missing data-values, mixed data types, 
two to many coders, and has no minimum data size [35]. Content 
analysis approaches have previously been used in information 
visualization, for example to examine the use of rhetoric [25] and 
narrative [42]. Krippendorff’s questions are addressed in the 
following sections, which look first at the dataset, then at the process 
of unpacking a visualization and coding it to allow recognition of 
different kinds of acquired meaning.  
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Fig.  1. An illustrated guide showing how visualizations were 
decomposed for coding. A visualization is comprised of one or more 
self-contained component representations, classified as ‘graphic’, 
‘figurative’ or both (hybrid). This visualization has three components, 
one of which is larger (a ‘weighted panel’ composition). (right) The 
component representation is a figurative illustration; (left) both 
component representations are graphics. (left top) A composition of 
graphic elements using vertical length and horizontal position to 
encode data; (left bottom) an arrangement of graphic elements using 
radial position and the size of a marker to encode data, and which 
includes a key. 

1.1 The Dataset 
To identify how conventions are used in visualization, we selected a 
sample of visualizations from two categories of the Kantar 
Information is Beautiful Awards 2014 showcase: infographics and 
data visualization [1]. For comparison purposes we selected the 
sample to obtain roughly equal numbers from each category. 
Therefore, we used the shortlist for the Data Visualization category 
(24 visualizations in total) and the longlist for Infographics, 
discounting one of the entries as it was a multipage report (26 
visualizations in total). We refer to this sample of 50 visualizations 
as the Kantar Information is Beautiful Awards 2014 (KIIBA14) 
dataset. The entire awards showcase can be viewed online [1]. 

The dataset includes visualizations published the National 
Geographic Magazine, the Washington Post, the Guardian and G2 
newspapers, gallery installations, a report from a commissioned 
survey, a building installation, as well as online publications [1]. The 
result is a set of visualizations which are aimed at a range of 
audiences, and vary considerably in terms of data-quantity and data-
complexity. In terms of Tory and Moller’s design model of 
visualization [48], all of the categories of their high level taxonomy 
(given, constrained, or chosen spatial layouts vs discrete or 
continuous models) are represented in the dataset.  

The dataset covers a broad range of topics, and includes 
humorous and general interest visualizations as well as pieces 
conveying new science (the infographic ‘Deep Brain Dive’ shows 
the result of imaging a mouse’s brain at the 1 micron scale [49]). 

Items in the KIIBA14 dataset are categorized based on the 
designers’ own understanding of the terms (no guidelines are 
provided). The resulting partition between data visualization and 
infographics thus represents a naturalistic distinction between the 
two categories – nominated participation in one or other tradition. In 
comparison to existing definitions in the literature, the data 
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visualizations are closer to meeting the criteria that information 
visualizations are bijective mappings “composed of discrete and 
disjoint visual symbols” [59]. They do not fit the suggestion that data 
visualization is sometimes used to mean scientific visualization [59]. 
In contrast to several definitions of data visualization in the literature 
[12, 59], neither set is interactive (interactive visualizations was a 
separate category of the awards). Only a small number of 
infographics in the dataset fit the stereotype of “illustration, large 
typography, and long, vertical orientation displaying an assortment 
of facts” [32]. Visualizations published in newspapers and magazines 
(the traditional outlet of the infographic [32, 59]) appear in both the 
infographics and data visualizations categories.  

The chosen set of visualizations has a number of advantages for 
detecting conventions. Each visualization has been judged by a panel 
of experts as an exemplar of good visualization practice1. 
Visualizations were judged according to four criteria: 
appropriateness, originality, beauty, and whether they achieved their 
objectives [1]. The judges’ decision that a visualization has achieved 
its objectives validates assumptions the authors have made that an 
element will be understood without explanation (i.e. is conventional). 
The criteria of originality skews the sample set towards innovative 
visualizations, therefore entries in the showcase are less likely to be 
standard designs or copies of famous visualizations. Thus when the 
same combination of visual variables is used, or some aspect of the 
visual arrangement is shared across visualizations, it suggests that a 
common visual language is being invoked. 

 

 
Fig.  2. Hybrid representations. Figurative and graphic elements can 
be closely linked in a visualization. (top) A component of the 
visualization ‘Creative Routines’ [40], showing a graphic containing an 
illustration. (bottom) ‘Pets’ [23] showing graphics positioned within a 
figurative element. Reproduced with permission. 

1 The award judges are a combination of experienced visualization designers 
and researchers. 

A non-trivial portion of the dataset (20%) are in languages other 
than English, including German-language (four examples), Italian 
(four examples), Chinese and Portuguese (one example each). Visual 
conventions which can be identified from the set are likely to be 
conventions which exist within a broad international community of 
practice. 

1.2 Coding a Visualization 
In order to apply content analysis to the search for acquired meaning, 
the field needs a method for decomposing and coding a visualization. 
As demonstrated by the KIIAB14 dataset, visualizations can be 
complex multi-panel designs, showing different visual perspectives 
on a single subject. The content analysis code set should encompass 
and accommodate the arrangement of common elements into 
different designs. It should also recognize when common techniques 
are being applied as part of the composition of a visualization. 

The first stage of our coding method was to decompose the 
visualization into its component panels and identify the overall 
composition and the visual elements at the base level of 
decomposition. The second stage was to identify how the data is 
represented through the visual elements. After being defined, the 
coding scheme was applied independently by authors Byrne and 
Angus, and the level of agreement tested using Krippendorff’s alpha. 

1.2.1 Stage 1: Unpacking Composition 
Many visualizations contain sections which could be viewed on their 
own as self-contained visualizations. Recursive definitions consider 
a visualization to be comprised of one or more ‘component 
representations’ which may in turn contain their own component 
representations [16].   

Here we define a component representation as a portion of the 
visualization which can be repositioned without affecting its 
meaning. A component representation is a ‘panel’ in the containing 
representation (see Figure 1).  

At the top level of the composition is the whole visualization – 
the image in the KIIBA14 dataset. The dataset analyzed here does 
not contain any interactive visualizations, however, the recursive 
model of visualization could be extended to multi-view interactive 
visualizations by considering the visualization system as a whole as 
the highest level, and each view as a lower level component 
representation. At the lowest level of the composition are 
arrangements of figurative or graphic visual elements.  

A key aspect of the coding process is identifying component 
representations as either figurative and/or graphic, based on the 
following definitions:  
• Graphic representation: a representation where relationships 

within a dataset are revealed by mapping categorical, ordinal or 
quantitative data to visual variables [7]. 

• Figurative representation: illustrations, photographs, cartoons 
and schematic diagrams, where the meaning is based on the 
similarity of the shape of the representation to the shape of an 
external object or concept. 

Figurative elements are connected figures or images, while 
graphic elements consist of combinations of perceptual primitives – 
point, line or area markers whose position, hue, shading, shape, angle 
or size encodes data. A graphic representation can contain figurative 
elements and vice versa (see Figure 2). Hybrid representations or 
hybrid visual elements are counted as both graphic and figurative. 

The first stage of coding considered the high level composition2 
of the visualization and the presence of figurative and graphic 
elements. The composition of each visualization was classified as 
one of the following types:  

• a single irreducible representation; 

2 if an image is used to frame the visualization as a whole, the high level for 
coding purposes is defined as the level inside this frame. 
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• a panel layout where one or more component representations 
share the space roughly equally; 

• a weighted panel where one component representation was 
noticeably larger than the others.  

Additionally, coders identified whether each visualization contained 
at least one figurative and at least one graphic element. 

1.2.2 Stage 2: Coding the visual elements 
The second stage of coding examined the data being represented 

and how the variables or properties of that data were mapped to 
different visual elements.  

Figurative elements can be classified into three distinct roles: 
• Content: Illustrations3 are part of the content of the 

visualization when they show an object’s identity or its contents 
or how a process works. We refer to these content-bearing 
illustrations as figures. Illustrations which do not provide 
additional information beyond what the user must already know 
to recognize and understand the shape are referred to as images. 

• Context: While they do not provide additional content, images 
can frame, reinforce or introduce the subject of the 
visualization, and can play a key role in catching the attention 
of audiences.  

• Labels: images can also be used instead of or alongside text 
identifying a graphic element.  

Each visualization was coded for whether it includes any instance of 
figurative content, context or labels. Maps are a privileged form of 
figurative representation, often included as ‘valid’ graphical 
elements even when other figurative elements are excluded (e.g. [7]). 
In addition to being classified according to its figurative role, the 
presence of a map was coded to examine the effect of this 
privileging. Figures (i.e. content bearing illustrations) were 
additionally coded to show the presence of particular figurative 
conventions for showing content, for example the visual metaphor of 
a magnifying glass. 

Each graphic element was coded based on four high level 
categories – representations of time, linear layouts, representation 
using area, and conventional color meaning. The high level 
categories were chosen to probe for a variety of conventions in the 
dataset. A quick survey of the dataset was undertaken to examine the 
subject of each work as well as how quantitative and qualitative 
information was encoded. The initial survey suggested that time was 
a commonly used subject in representations, and that area was 
frequently used to compare quantities. To test whether conventions 
can occur around a particular subject, time was chosen as a coding 
category, with linear axes chosen to allow comparison across 
subjects. Area was also chosen as a high level category because its 
frequency suggested potential conventions. Color meaning was 
chosen since it is frequently named in the literature [3, 46], and we 
wanted to test whether the conventions given as examples are in fact 
used in practice.  

Since conventions are used across a community, we counted the 
number of different visualizations in which an element appeared, 
ignoring multiple uses of the same technique in a single design.  

A visualization was considered to contain color meaning when 
the color scheme used for a set of visual markers had some 
recognizable association with the represented data (e.g. blue/pink for 
men/women). Natural or realistic shading of illustrations (e.g. blue 
for water on a map) was not counted as color meaning.  

1.3 Recognizing Acquired Meaning 
The coded data was analyzed to determine the prevalence of acquired 
meaning in the KIIBA14 dataset, the different forms of visual 
conventions present, and the contexts in which convention and 
figurative visualization were used. The presence and prevalence of 

3 Illustrations is used here to includes imagery such as  photographs. 

figurative elements was read directly from the coded data. 
Identifying conventions required a slightly more complex analysis 
process, taking into account the presence of representational 
variation, and the placement of a visual element. 

Conventions, including visual conventions, have two identifying 
characteristics. The first is prevalence; standard forms for 
representing an object appear frequently within a community of 
practice. The second is pervasive comprehension within the 
community. A convention does not need to be explained, it is 
assumed as common knowledge by visualization designers and their 
audiences. 

Based on the characteristics of prevalence and assumed 
comprehension, it is possible to identify conventions from the coded 
data. To determine prevalence elements or patterns which frequently 
appeared in the sample of visualizations were identified. The coded 
data was analyzed to identify disproportionately common visual 
elements and examine the context in which they were used. 

We then looked at guides, keys or explanations included by the 
designers within their own work to explain how to read their 
visualization.  An absence of explanatory features suggests that the 
visual element is conventional – the designers and judges assume it 
will be widely understood without explanation.  

A final indicator of conventional meaning is the placement of an 
element in the visualization. Designs requiring the reader to learn a 
new visual formalism are likely to be given prominence in the 
visualization, in terms of space and position. Elements which take up 
a small proportion around the periphery of the display area are 
therefore more likely to be conventional. 

Conventions are socially constructed, and can be wide or limited 
to a small community. The scope of our analysis is the use of visual 
elements across the two categories of visualization from which we 
have sampled: infographics and data visualization.  

As is typical of qualitative studies, the content analysis applied 
here uses a relatively small sample set, which limits our ability to 
generalize from the study results. The study findings are influenced 
by our choice of which aspects of visualization to observe – choices 
embodied in the coding process and coding schema described above. 
We chose a qualitative method because it allows us to explore how 
conventions manifest within visualization, and thus represents a good 
‘first pass’ method, which can provide the foundation for 
quantitative analysis in the future. 

Our analysis is limited to detecting conventions and acquired 
meaning at a high level of composition. Some visual elements may 
be tightly coupled, often occurring in the same irreducible 
component representation (for example maps with markers whose 
area shows quantities). However, the coding process did not capture 
how far apart in the visualization decomposition two elements are, 
and so cannot detect this kind of convention.  

2 RESULTS 
The results of the content analysis are presented in three parts: the 
use of figurative elements, representations of time, and other 
candidate graphic conventions. Across these three areas there was 
high agreement between the two coders. Overall, there was 98.8% 
agreement, with a Krippendorff's alpha of 0.965. 

2.1  Use of Figurative Elements 
Figurative elements are frequently used within the dataset, 
particularly in the infographics category. Of the infographics, 88% 
contain at least one use of figurative visualization, as do 67% of the 
data visualizations. Furthermore, both the infographics and data 
visualization categories included multiple examples of each type of 
figurative element. Figurative elements were most commonly used as 
labels in both categories (69% and 42% respectively), while content-
bearing figures and contextual images were much more prevalent in 
the infographics category (see Figure 3). 
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Fig.  3. The percentages of infographics and data visualizations which 
contain different types of figurative elements. More infographics 
contain figurative elements across all three roles (content, context and 
labels), but this pattern does not hold for maps. The ‘any’ bars on the 
left do not equal the sum of the other bars, since visualizations may 
contain multiple figurative elements playing different roles, and maps 
additionally play one of figurative roles. 

2.1.1 Maps 
Maps are such a common feature in information visualization that 
their figurative nature is often overlooked. Maps rely on the reader 
recognizing the shape of the country or region depicted [7], with an 
illustration providing context to allow the reader to mentally place 
any geospatial graphical elements (see Figure 4A and B). The 
figurative elements of a map can be recognized by looking for 
elements which are defined by shape files. For example, ‘Breathing 
City’ [13] includes figurative elements, despite first appearances, 
since shape files of Manhattan buildings are used to define the shape 
of each point (see Figure 4C). The dataset contains only a single 
example of geospatial data not overlaid on a figurative map element 
[26]. 

The dataset provides examples of maps falling into all three 
classes of figurative representation: figures, context and labels. 

 
Fig.  4. Recognizing the figurative aspects of a geospatial 
representation. A (a map) and B (not a map) show the same (made 
up) geospatial data with and without a figurative background. In C, 
‘Breathing City’ [13] provides an example of a map which is also a 
content bearing figure, since the shape of its points show the 
composition of Manhattan in far greater detail than the reader needs to 
recognize the city. ‘Breathing City’ has been reproduced with 
permission. 

Fig.  5. Maps in a context and labelling role. A segment from 
‘European Union Humanitarian Aid’ [44] shows how maps can fit into 
multiple places in our proposed classification of figurative visualization 
roles. In the visualization, the map is used as an image the audience is 
meant to recognize, providing context for where aid-receiving 
countries are located geographically and relative to each other. The 
location of markers on the map are themselves map segments – 
country icons used as labels. Blurring the boundaries between 
figurative and graphical representation, the size of each country icon 
encodes quantitative information. Reproduced with permission.  

 ‘Breathing city’ (Figure 4C) is a figure, the shape of its points 
showing the composition of Manhattan in far greater detail than the 
audience needs to recognize and orient themselves. The background 
illustration of ‘European Union Humanitarian Aid’ is an image, 
providing background context for the quantitative information 
displayed in the visualization, but no more geographic detail than is 
already expected of the reader (shown in Figure 5). The same 
component visualization includes maps as icons (labels), with 
country shapes used as location markers whose size indicates the 
quantity of aid received. 

2.1.2 Composition  
The importance of figurative visualization in practice can also be 

seen from the composition of the visualizations in the sample set.  
Infographics used the panel composition the most (50% of the 

time, compared to 21% for data visualization), while data 
visualization favored the single representation form (42% compared 
to 12% for infographics). The weighted panel layout was used 
consistently across the two categories in just under 40% of cases 
(39% infographics, 38% data visualization).  Of these weighted panel 
layouts, a close inspection of the relevant visualizations showed that 
around half of the infographics used either a figure or an image as 
the main component, while nearly half of the data visualizations used 
a map. 

2.1.3 Conventions in Figures  
The figures (i.e. content-bearing illustrations) in the sample 

visualizations share a number of techniques for showing the nature 
or composition of an object, and how it fits into a known context:  
• Outline:  the object is illustrated through an outline style with 

either transparent or partially filled in shading. Outlining is used 
for both organic (mouse [49] and human [39]) and inorganic 
objects (race car [41]) in the sample set.  

• Magnifying glass: a portion of one illustration is enlarged and 
overlaid or connected to the smaller scale image. A magnifying 
effect is used both with figures showing objects, and with maps 
([6], [49] and [39]). 

• Cut away: - a cross section of an object is shown by fitting the 
segment into a geometric shape – typically a rectangular prism. 
The cut away technique is used to show a segment of mouse 
brain in a cube [49], and skin tissue in a rectangular prism [39]. 

C.A.

B.
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The outlining technique was used in just over half of all 
visualizations with figures. Additionally, several examples use both 
figures to show content and images for context. In some cases a 
consistent style is used throughout the visualization, but in a few 
cases ([41, 58]) a realistic style or photograph is used for the 
contextual image, while a more abstract style (outline or silhouette) 
is used for the content. 

While uncommon, the use of the magnifying glass (used in 3 
visualizations) and cut away techniques (used in 2 visualizations) by 
multiple different authors in the highly flexible medium of 
illustration indicates that these are likely to be figurative 
conventions. The placement of some instances of each technique in 
the periphery of the overall composition further supports their 
conventional nature (e.g.[39], [49], [6]).  

2.2 Visual Representations of Time 
Many of the visualizations in both categories include some 
representation of time. More than half (54%) of the data 
visualizations and nearly three-quarters (73%) of the infographics 
showed the values or properties of objects changing over time. Time 
is shown running along horizontal, vertical, circular and curved axes, 
in a comic strip style panel layout, with animation, and using area, 
with varying frequencies (Figure 6). Six layouts were used more than 
once (see Figure 7).  

The most common representations of time were horizontal and 
vertical – linear – layouts. Furthermore, linear representations of 
time were often peripheral in the overall composition of the 
visualization. None of the linear representations of time had an 
explanatory guide, and many did not have a “time” or similar label 
on the axis, simply numbering the units. 

2.2.1 Direction 
One pattern within the linear layouts of time was the direction of 

the axis. Horizontal layouts exclusively ran left to right. Vertical 
layouts were slightly less constrained. All five instances of 
visualizations which contained a vertical layout of time included an 
example where time ran downwards (small values higher up on the 
page), but two also included a representation of time running 
upwards (small values towards the bottom of the page). In 
comparison linear layouts of data other than time ran 
overwhelmingly left to right for horizontal layouts (93% of 
instances), and bottom to top for vertical layouts (88% of instances). 

2.2.2 Time in figurative representations 
Figurative representations of time used the panel layout (as too 

did some graphic representations). An example from the edge of 
“Revolution on Four Wheels” [41] is shown in Figure 8. The passage 
of time is indicated only by the different dates in either panel, 
suggesting that the reader requires little guidance to understand this 
representation. 

2.2.3 Cyclical Representations of Time 
Time was only arranged in a circular layout for particular sets of 

units: hours in a day, 12 hours, or days in a year. That is, circular 
layouts of time were restricted to cyclical ranges of time. 

2.3 Other Graphical Conventions 
Several other patterns were identified from the content analysis. The 
comparison of different quantities through the areas of shapes was 
used in 52% of all the visualizations. Circles were the most popular 
shape (especially in the data visualization category, where 79% of 
area markers were circles), followed by icons in the infographics 
category, and other geometric shapes in the data visualization 
category. Shapes showing area were often annotated with exact 
quantities (62% of visualizations with a set of area-varying shapes 
used annotations). 

 
Fig.  6. Layouts of time in infographics and data visualization. The 
height of each bar shows the percentage of visualizations in each 
category which include at least one instance of a particular layout. Of 
these subsets, linear (horizontal and vertical) layouts were the most 
frequently used.  

 

 

  
Horizontal Vertical Circular 

   
Curve Panel Radial 

Fig.  7. Arrangements of visual elements used to represent time more 
than once in the sample set. 

 
Fig.  8. A panel arrangement representing time [41]. Panel 
representation of time is typical where the object changing over time is 
being represented figuratively. Reproduced with permission. 

Literature discussing conventional codes often mention color 
meaning (see for example [46]). Color meaning was present but not 
prevalent in the data, identified in 12% of infographics and 8% of 
data visualizations. Color meaning used to identify categories (for 
instance blue for men and pink for women) was explained with keys: 
authors did not rely on their audience knowing the conventional 
meaning.  
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3 DISCUSSION 
Data visualization and infographics are grounded in different design 
traditions, which can be matched to their different use of 
conventions. The legacy of Bertin’s exclusion of all figurative 
elements except maps [7] can be seen in the privileging of maps 
compared to other figurative elements in the data visualization 
category. The map of Manhattan in fig 4 is analogous to the 
formula 1 car in fig 8 – both are the outlined projections of a 
physical object. Figurative techniques such as magnification are also 
used identically in maps as in other figures. Yet of all figurative 
elements, only maps appear as frequently in data visualization as in 
infographics. In data visualizations figurative elements are rarely 
used to show content, and when they are, the content is often 
geographic. Although we did not formally measure the relative area 
taken up by contextual images as part of the study, non-map context 
images appear to make up a smaller component of the overall 
composition when they are used in data visualizations. Our analysis 
of representations of time shows that data visualization used a 
greater variety of layouts, while analysis of composition shows that a 
single graphic component was common (rare for infographics). Data 
visualizations often combined many facets of a subject into a single 
graphic composition. Infographics, which are grounded in a tradition 
of narrative, are far more likely in our sample to use a panel 
composition where different component representations can be read 
in sequence. Each component representation in a panel composition 
may itself be a simple statistical graph – we observed that 
representations of time in infographics use a smaller range of layouts 
and are far more likely to use basic horizontal and vertical axes (see 
fig 6). In addition, infographics used icons as area markers far more 
than data visualization (5 instances in infographics compared to a 
single instance data visualization shown fig 5), suggesting greater 
comfort in blurring the lines between figurative and graphic 
representations in infographics.  

Data visualization projects in the KIIBA14 dataset do not meet 
Bertin’s ideal of graphic purity, using acquired codes of meaning at 
nearly the same rates as infographics. Nor does it seem likely that the 
designers are unaware of this ideal. The privileging of maps over 
other forms of figurative element provides evidence that data 
visualization is influenced by its guiding theory. The dataset better 
fits a model where designers actively deviate from a ‘graphically 
pure’ approach in order to leverage their audiences’ experience and 
prior knowledge to communicate effectively. 

In the following section we interpret the results of the content 
analysis in the context of existing literature, proposing a number of 
guidelines (labeled G1 – G7) for the use of acquired meaning. These 
guidelines have particular application to information visualization 
designers working in a similar context to the KIIBA14 dataset – 
projects designed for a general audience, which aim at originality 
and beauty. The guidelines developed here could also be used to 
formulate hypotheses for quantitative research, to rigorously test 
whether the use of conventions leads to more effective visualization 
designs.  

3.1 Figurative Visualization 
A wide variety of figurative elements appear in both the infographics 
and data visualization exemplars. Most visualizations in the dataset 
used graphic and figurative elements in tandem, using each 
technique to represent different aspects of a subject. More 
importantly for efforts to integrate acquired meaning into theory, 
figurative elements fit into distinct roles, and conventions are used to 
convey common concepts. 

The roles of figurative visualization vary according to how they 
leverage an audience’s object recognition to communicate new 
information. Content elements (figures) show both known and 
unknown objects through shape, linking the two to provide the reader 
with the required reference point to frame new information. 

Figurative conventions enable the linking process – examples 
include outline and partial coloring, magnification, and cut away. 
G1: Use figurative visualization to show the composition or nature 
of an object or how a process works. Link new information to a 
familiar context through outlining, magnification or cut-away 
techniques. Use panels to show changes in an object over time. 

Context and label images use the reader’s recognition of a shape 
to explain or draw attention to graphic elements of the visualization. 
An example of context can be seen in the framing of ‘pets’ within the 
outline of a dog (fig 2, lower image). Existing research argues that 
the inclusion of recognizable contextual images will attract attention, 
as well as aid in understanding and retention of the represented 
information [5, 9, 10, 34]. In a labelling function, icons share the 
strengths of context images, but allow the abstract patterns of data to 
dominate the visual scene. G2: To attract attention, to orient a 
general audience to an unfamiliar subject, or to make a visualization 
memorable, use recognizable images for context or labels.  

The figurative role of a map depends on how it will be used – the 
same GIS software can be used as context if the insight for the user 
concerns the positions of objects around a familiar location, or in a 
content role if the tool characterizes the location. In the KIIBA14 
dataset maps were used in all three figurative roles: to show content, 
to provide context or in icon form as labels. As such, guidelines on 
using figurative elements (G1 and G2) also apply to maps. In 
particular, designers using maps as context or icons in the style of fig 
5 should provide enough detail to be confident that their audience 
will recognize the location from the information provided (see G2). 
For example, icons of the seven Australian states and territories 
would be recognizable enough to use as labels for an Australian 
audience, but need to be accompanied by text for an international 
audience. Maps showing content need to follow G1 outlined above. 
To apply the visualization technique of Breathing City (fig 4) to a 
less recognizable city like the authors’ home town of Brisbane, for 
instance, G1 would advise linking the main figure to a map showing 
Brisbane’s location within the recognizable landmass of Australia, in 
order to orient the reader. G3: To ensure the recognition of label and 
context maps, and to orient the reader when a map plays a content 
role, adjust the level of detail and supporting information according 
to the reader’s familiarity with representations of the location. 

The results showed the prevalence of outlining as a technique, as 
well as examples of less realistic illustrations being used to show 
content. Several explanations could account for the use of more 
realistic images as context and more abstract illustrations for content. 
One explanation is that the use of photographs in news media has 
produced a convention where photographs (or illustrations like them) 
accompany the story, but do not necessarily provide key information. 
A second explanation is provided by science illustrator Jenny Keller:  
“In a good illustration, you can create a representative “average” 
or “typical” specimen from pictures of separate individuals, or 
emphasize only the most important information about a subject, 
leaving out distracting clutter.” [11] P. 165 
Regardless of the cause, using a realistic style for context appears to 
be another convention. G4: Use a more realistic style for context 
than for content elements, if using figurative elements in both roles. 

3.2 Graphic Conventions 
Analyzing graphic representations of quantitative information, 
including time, showed that the visual language of graphics is highly 
flexible. For any given subject, there are multiple different 
representations which can be used. At the same time, clear 
conventions emerged around the use of particular arrangements and 
particular datasets.  

Theories of graph comprehension [38] hold that familiarity with a 
particular type of graph leads a reader to understand such 
visualizations faster or with less effort (greater fluency). According 
to this model, conventions fulfil a useful function within 
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visualization – they signal to the reader the kinds of judgements and 
comparisons to make as they examine the graph. An informal survey 
of guides and legends in the KIIBA14 dataset supports this view: 
unconventional graphic arrangements are more likely to contain 
detailed ‘how to read’ guides. G5: Use conventions to create 
representations which are easy to read. 

3.2.1 Conventions and Exceptions  
While conventions are used within the KIIBA14 dataset, they are 

not strict rules that designers always follow. The data visualization 
category provides examples where conventions were broken to 
construct an effective visual metaphor, and to create a perceptually 
efficient graphic arrangement. ‘the depth of the problem’ [27] shows 
the believed depth of the missing MH370 plane, showing heights and 
depths of familiar objects and events (e.g. the Washington 
Monument, the depth of the titanic) along a vertical scale. In contrast 
to convention, the vertical axis runs top-to-bottom. By breaking 
convention, the design establishes a highly effective visual metaphor 
of a cross-section of the ocean viewed at scale. ‘What Teachers 
Think’ [45] also breaks a visual convention observed in the dataset, 
in this case the convention of using circles as the shape for area 
markers. The designers instead use square markers arranged in sets 
of four to form windmill shapes, where each set represents the 
response of surveyed teachers from a particular country, and the size 
of each square within a set represents the proportion of teachers who 
agreed with one of four possible responses. The square shape allows 
the four grouped markers to be positioned so that they nearly touch, 
forming a highly salient group according to gestalt principles. At the 
same time, each square can vary in size without overlapping. The 
result is a graphic arrangement that allows comparison between 
teachers’ survey responses at the country level by looking at the 
overall shape of each windmill, as well as comparison of each 
possible response by looking at the component squares.  

Interesting patterns of convention and exception appear within 
the analyzed dataset. The distribution of representations of time (see 
fig 6) at first suggests a pattern where time is conventionally 
represented along a left-to-right horizontal axis, and other 
representations of time are simply exceptions to the convention. A 
closer reading of the ‘exceptional’ visualizations reveals an 
alternative explanation: visualizations of cyclic periods of time 
(hours in a day, days in a year) are represented using a circular 
layout, non-cyclic quantitative representations of time are 
represented horizontally, and the changes over time of a figurative 
object (i.e. qualitative changes over time) are represented using a 
panel layout. Three complementary conventions around time co-exist 
in the KIIBA14 dataset, with each convention applying to a 
particular subset of time-related data. The infographics category 
contains several additional exceptions to the horizontal convention 
where the time axis runs vertically. In these cases, the vertical axis is 
more likely to run top-to-bottom (4 out of 5 instances). One 
explanation is that multiple competing conventions are operating 
within the infographics community – a horizontal left-to-right 
convention, and a vertical top-to-bottom convention. In the KIIBA14 
dataset the horizontal convention is more prevalent, but the vertical 
convention is also present within the infographics category. 

Exceptions in the KIIBA14 dataset show that conventions do not 
override perceptual considerations. The example of time suggests 
that multiple conventions can usefully co-exist within a community 
of practice. Further research is needed to understand more precisely 
the relationships and interaction between conventions, perceptual 
cues, and other forms of acquired meaning (including novel visual 
metaphors, which were not considered in this analysis). While the 
details of how conventions and other codes of meaning interact are 
yet to be revealed, the combination of examples from the study are 
compelling evidence that conventions should be included as an 
additional constraint in the design process, not as rules to blindly 

follow. G6: Conventions are tools, not rules – balance the ease of 
reading provided by conventions against other design 
considerations. 

3.2.2 Sources of Conventions   
Traditional theories of graphic visualization are based on the 

categorization of data into qualitative, ordinal, and quantitative types 
[9, 26]. Data-type classification is insufficient for understanding 
visual conventions, as conventions around the representation of time 
in the KIIBA14 dataset show.  The cyclic to circular convention only 
applies to time; other circular layouts simply fit data points to 
angular positions (e.g.[43, 52]). Similarly, most non-time vertical 
axes increase from bottom-to-top, whereas for representations of 
time the opposite is typically used. The presence of conventions 
which only apply to a particular subject (time) suggests that the 
subject of the visualization is important, and future theories will need 
to extend beyond data types in order to incorporate visual 
conventions. Steps in this direction are already underway within the 
field, with tools like Tableau encoding a preference for a line graphs 
to show time [36]. However, a one-to-one mapping between subject 
and representation type is overly simplistic, and ignores the 
possibility that subjects may be multi-layered. 

Visual conventions appear to derive from existing conventions 
within language and culture. The direction of horizontal axes 
matches the direction of writing in all of the visualizations in the 
dataset. A search outside the KIIBA14 dataset for visualizations in a 
right-to-left language, Arabic, revealed examples where time ran 
right-to-left [2, 14]. Conventions may also have a narrow, specific 
origin and scope. For example, the top-to-bottom direction of vertical 
time axes may follow the layout of a timetable. Given that this 
convention was found only in the infographics category, it may also 
be influenced by the traditional long vertical layout and associated 
reading direction of infographics [32].  

Since conventions can vary within local communities of practice, 
applying a formal methodology like content analysis forces designers 
to step away from their own expectations about the use and scope of 
conventions. Design choices can instead be based on evidence of a 
convention within the target field. 
G7: Discover and use the conventions within the target user 
community and subject domain. 

4 IMPLICATIONS FOR PRACTICE 
 Successful codification of acquired meaning has implications for 
design and research. This section proposes that guidelines for the use 
of acquired meaning be reconciled with existing heuristics for 
design, and outlines a research agenda for integrating acquired 
meaning into existing theory. 

4.1 Implications for Design 
Analysis of the KIIBA14 dataset provides evidence that acquired 
codes of meaning are used in information visualization as an 
effective design tool, but that these codes are applied selectively. The 
implication is that designers should be aware of acquired codes of 
meaning, as well as perceptual cues. The two interpretation 
mechanisms provide different perspectives on what constitutes good 
design. Perceptual cues provide insight into how well a 
representation matches types of data based on an understanding of 
the human visual system. In contrast, acquired codes are concerned 
with leveraging a reader’s familiarity with shapes and conventions to 
provide context for and effortless understanding of new information. 

The KIIBA14 dataset reveals the potential for acquired codes to 
compete with each other and with perceptual cues (see section 3.2.1). 
Perceptual and acquired codes of meaning can guide design in 
opposite directions. An example of an apparent conflict between the 
two codes can be seen in the use of areas to compare quantities. 
Areas of shapes, particularly circles, are a conventional 
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representation for comparing quantities, despite that fact that area 
judgements rank poorly in perceptual studies [15]. In the dataset, 
circles used for area comparisons are often annotated with the exact 
quantitative value represented. This suggests a more nuanced 
convention, where circles take advantage of the reader’s acquired 
codes, but annotation compensates for the lack of perceptual 
precision. Recommendations for good use of acquired meaning do 
not invalidate recommendations based on perceptual cues. Instead, 
good use of acquired codes should take into account existing 
knowledge of perceptual cues, finding ways to reconcile the two.  

Acquired codes, especially graphical conventions, are a 
mechanism for showing the reader something in a familiar way. But 
familiar is not necessarily best, as shown by the examples of 
exceptions discussed in section 3.2.1. Novel methods of visualization 
can provide new and engaging ways of looking at a subject. 
Knowledge of a convention is useful whether or not it is followed, 
since it suggests what is familiar and unfamiliar to an audience. In 
particular, when breaking a convention, keys and other guides to 
reading the visualization should be prominently positioned. 

Use of acquired codes carries with it the risk that a particular 
reader will not be familiar with the convention used, or will not 
recognize the illustrated object [7]. Learning about the visualization 
practice of the target audience (G7) provides some mitigation of this 
risk, but does not remove it completely. The guidelines above could 
be enhanced by research into techniques for representing data that 
allow recovery or graceful degradation of communication when 
acquired codes are not recognized. 

Conventions are by their nature based on an evolving community 
of practice. New conventions may develop which override existing 
ones, and conventions may only hold within a particular community 
– bioinformatics or business analytics, for example. The conventions 
identified by our analysis are not the only conventions, nor are they 
universal. The link between subject and visual convention supports 
the argument that design needs to be coupled with a deep 
understanding of the target domain and user community.  

4.2 Implications for Research 
A limitation of qualitative research such as content analysis is that 
findings generalize only to the extent that the dataset is 
representative of the domain. The KIIBA14 dataset is drawn from a 
single repository of visualizations which were chosen partly based on 
the criteria of beauty and originality. Visualizations designed for a 
technical audience (for example an air traffic control system 
interface) may not share either aim, and may not use acquired 
meaning in the same way. Nevertheless, articulating how 
conventions and figurative elements manifest within visualization is 
a key first step towards classification and further study, of acquired 
meaning.  

The present paper has provided a demonstration of how acquired 
codes of meaning can be recognized and studied through 
examination of visualization practice. Further research is needed to 
develop fully-fledged theories of acquired meaning in visualization 
and integrate these theories with existing knowledge of perceptual 
cues. 

Integrating acquired meaning into theories of visualization 
interpretation would benefit from reflective practice on the part of 
the visualization community. Curated lists of the acquired codes of 
meaning used within common domains of visualization would 
provide useful toolkits for working with multiple communities. 
Ongoing monitoring of the visual designs produced in different 
communities would add to the visual conventions identified here and 
allow the identification of emerging or changing conventions.  

To enable reflective practice, methods for efficiently recognizing 
conventions within a target user community and subject area need to 
be further refined. The method used here places more emphasis on 
the prevalence of a technique across a sample of visualizations than 

previous content analyses (for example [25]). Extensions of content 
analysis methods should be developed for use analyzing acquired 
meaning. For example coding methods which take into account the 
distance between two elements in the visualization decomposition 
would allow the identification of more sophisticated conventions 
around the arrangements or combinations of different visual 
elements used in practice. 

Another area for further study is to determine trade-offs and 
complementary relationships within acquired codes, and between 
conventions and perceptual cues. Looking further into the role of 
acquired meaning, questions arise as to how far methods for 
understanding acquired meaning and convention can be extended to 
cover traditional perceptual mechanisms. 

5 CONCLUSIONS 
An evaluation of the KIIBA14 dataset shows that the supposed ideal 
of graphic purity is not adhered to by data visualization designers. 
Instead, the pattern of acquired codes of meaning across the dataset 
provides evidence that conventions and figurative elements are used 
because they are an effective design resource. Both data visualization 
and infographics designers have made use of conventions, and used 
figurative elements to show content, provide context and to label 
data. Within visualization practice, learned conventions are used in 
consistent ways to leverage the audience’s existing experience, 
expertise and expectations. Our analysis suggests that the 
interpretation of a visualization relies as much on figurative 
visualization and graphical convention as it does on innate perceptual 
cues. Content analysis offers a method for codifying the acquired 
codes of meaning operating within a community of practice and 
translating these conventions into heuristics for visualization design. 
The success of this method provides both the means and the 
motivation to integrate acquired meaning into the broader 
visualization research and design agenda.  
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